一代测序,又称Sanger测序,是由Sanger教授于1975年发明的一种称为链终止法的技术,用来测定DNA序列,这种方法也称做“双脱氧终止法”或是“桑格法”。其核心原理是采用ddNTP取代dNTP,在合成核酸链的过程中ddNTP无法形成磷酸二酯键,从而导致DNA合成反应中断。对每个ddNTP进行荧光标记,产生以A、T、C、G结束的四组不同长度的一系列核苷酸,然后通过毛细管电泳进行分离,通过检测荧光信号获得DNA序列。
一代测序最大的优势就在于它具有较高的准确性,被称为测序行业的“金标准”,但同时受限于通量低,对于大样本的测序成本较高。目前一代测序主要应用于少量DNA分子测序实验。如对质粒、PCR产物、单基因突变致病基因位点明确。
二代DNA测序技术又称下一代测序技术(Next-generation sequencing,NGS),是第一代测序技术的划时代变革的核心。二代测序相对于第一代测序的最大优势就是高通量,适合于大样本测序数据的应用,所以也称为高通量测序(High-throughput sequencing)。
NGS技术可以实现多基因大规模平行测序,可以从根本上解决单基因遗传病因异质性、基因多、表型复杂造成诊断难的实际问题。NGS实验流程是一个文库制备→捕获→测序→数据分析的过程,是现行最主要的测序技术。
NGS技术因其高效和低廉的单碱基测序成本为临床应用提供了不可估量的前景优势,尤其对于相对传统的 Sanger 测序法其每次产生的数据量几乎是天文数字,加之信息科学的持续发展,使得对这样的大数据进行有效的处理已成为现实。目前NGS技术已应用在肿瘤相关、生殖遗传、感染相关、科学研究等方面。
综上所述,大家可以得出结论,一二三代测序技术在不断的发展中都存在着各自的优势和不足,三代测序技术相互补充提高了测序的可行性,降低了测序的成本。